Thermally switchable, bifunctional, scalable, mid-infrared metasurfaces with VO2 grids capable of versatile polarization manipulation and asymmetric transmission

Author:

Serebryannikov Andriy E.ORCID,Lakhtakia Akhlesh1ORCID,Ozbay Ekmel2

Affiliation:

1. The Pennsylvania State University

2. Bilkent University

Abstract

We conceptualized three-array scalable bifunctional metasurfaces comprising only three thin strip grids and numerically determined their characteristics in the mid-infrared spectral regime for switchable operation scenarios involving polarization manipulation and related diodelike asymmetric transmission (AT) as one of two functionalities. A few or all of the grids were taken to be made of VO2, a bifunctionality-enabling phase-change material; there are no layers and/or meta-atoms comprising simultaneously both metal and VO2. For each proposed metasurface, two effective structures and, therefore, two different functionalities exist, corresponding to the metallic and insulating phases of VO2. The achieved scenarios of functionality switching significantly depend on the way in which VO2 is incorporated into the metasurface. Switchable bands of polarization manipulation are up to 40 THz wide. The AT band can be modulated when Fabry–Perot (anti-) resonances come into play. Besides, transmission regimes with the cross-polarized component insensitive to VO2 phase change are possible, as well as the ones with all co- and cross-polarized components having the same magnitude for both linear polarizations of the incident wave.

Funder

Narodowe Centrum Nauki

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3