Electrically tunable metasurface for dual-band spatial light modulation using the epsilon-near-zero effect

Author:

Bhowmik TanmayORCID,Sikdar DebabrataORCID

Abstract

Electro-tunable metasurfaces have attracted much attention for the active control of incident light at the nanoscale by engineering sub-wavelength meta-atoms. In this Letter, for the first time, to the best of our knowledge, a grating-assisted dual-band metasurface for spatial light modulation is reported that can operate in two crucial telecommunication wavelength bands, i.e., C-band and O-band. The proposed device consists of a silicon-nitride nanograting on top of a silicon–indium-tin-oxide (ITO)–alumina–gold stack. Effective medium theory combined with a modal analysis is used to study the guided-mode resonance dips at 1.55 µm and 1.31 µm in the reflectance spectra. We leverage the epsilon-near-zero effect of ITO by applying an external bias voltage to introduce large modal loss, which leads to the disappearance of the resonance dips at those wavelengths. We obtain a high modulation depth of ∼22.3 dB at 1.55 µm and ∼19.5 dB at 1.31 µm with an applied bias of –4 V and –5 V, respectively. Thus, the proposed metasurface may help to realize dual-band active nanophotonic devices.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3