Compact and efficient 1064 nm up-conversion atmospheric lidar

Author:

Chen Qianyuan,Mao Song,Yin ZhenpingORCID,Yi Yang,Li Xiang,Wang Anzhou,Wang Xuan1ORCID

Affiliation:

1. Wuhan Institute of Quantum Technology

Abstract

A model was developed to simulate lidar signals and quantify the relative errors of retrieved aerosol backscattering. The results show that a 1064 nm atmospheric aerosol lidar has a small relative error, which can be attributed to the presence of a sufficient molecular signal to facilitate calibration. However, the quantum efficiency of 1064 nm photons using silicon avalanche photodiode detectors is about 2%. To improve the quantum efficiency at 1064 nm band, this study used up-conversion techniques to convert 1064-nm photons to 631-nm photons, optimizing the power of the pump laser and the operating temperature of the waveguide to enable detection at higher efficiencies, up to 18.8%. The up-conversion atmospheric lidar is designed for optimal integration and robustness with a fiber-coupled optical path and a 50 mm effective aperture telescope. This greatly improves the performance of the 1064 nm atmospheric aerosol lidar, which enables aerosol detection up to 25 km (equivalent to 8.6 km altitude) even at a single laser pulse energy of 110 µJ. Compared to silicon avalanche photodiode detectors, up-conversion single photon detectors exhibit superior performance in detecting lidar echo signals, even in the presence of strong background noise during daytime.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3