Affiliation:
1. Wuhan Institute of Quantum Technology
Abstract
A model was developed to simulate lidar signals and quantify the relative errors of retrieved aerosol backscattering. The results show that a 1064 nm atmospheric aerosol lidar has a small relative error, which can be attributed to the presence of a sufficient molecular signal to facilitate calibration. However, the quantum efficiency of 1064 nm photons using silicon avalanche photodiode detectors is about 2%. To improve the quantum efficiency at 1064 nm band, this study used up-conversion techniques to convert 1064-nm photons to 631-nm photons, optimizing the power of the pump laser and the operating temperature of the waveguide to enable detection at higher efficiencies, up to 18.8%. The up-conversion atmospheric lidar is designed for optimal integration and robustness with a fiber-coupled optical path and a 50 mm effective aperture telescope. This greatly improves the performance of the 1064 nm atmospheric aerosol lidar, which enables aerosol detection up to 25 km (equivalent to 8.6 km altitude) even at a single laser pulse energy of 110 µJ. Compared to silicon avalanche photodiode detectors, up-conversion single photon detectors exhibit superior performance in detecting lidar echo signals, even in the presence of strong background noise during daytime.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献