Surface absorption channels in light absorption by a 2D-material-coated particle

Author:

Zhang ShangyuORCID,Dong Jian,Zhang Wenjie,Ma Lanxin,Liu LinhuaORCID

Abstract

Light absorption enhancement in micro- and nanoparticles has garnered considerable attention through coated 2D materials, which are physically homogenized by surface conductivities and surface currents within the electromagnetic boundary conditions. However, the electromagnetic absorption through the surface channel remains unexamined, hindering a deeper understanding of the underlying mechanisms of light absorption. In this work, we analytically derive the effective cross sections of surface absorption for a 2D-material-coated sphere, based on the framework of Mie theory amended by the surface conductivity. Our theoretical analysis confirms the absorption unitarity in wrapped particles, whereby the total absorption is equivalent to the sum of surface and volume absorptions. Considering optical dispersion of a polar interior, we identify a blue shift in the resonance wavelength induced by the 2D coating, which leads to a decrease in material dissipation and thus volume absorption within the particle itself in spite of a large field enhancement inside the particle. Finally, through a realistic case of small graphene-wrapped MgO spheres, we illustrate the dominant role of the surface absorption channel on the mechanism of absorption enhancements.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3