Deep learning denoising diffusion probabilistic model applied to holographic data synthesis

Author:

Velez-Zea AlejandroORCID,Gutierrez-Cespedes Cristian David,Barrera-Ramírez John FredyORCID

Abstract

In this Letter, we demonstrate for the first time, to our knowledge, a holographic data synthesis based on a deep learning probabilistic diffusion model (DDPM). Several different datasets of color images corresponding to different types of objects are converted to complex-valued holographic data through backpropagation. Then, we train a DDPM using the resulting holographic datasets. The diffusion model is composed of a noise scheduler, which gradually adds Gaussian noise to each hologram in the dataset, and a U-Net convolutional neural network that is trained to reverse this process. Once the U-Net is trained, any number of holograms with similar features as those of the datasets can be generated just by inputting a Gaussian random noise to the model. We demonstrate the synthesis of holograms containing color images of 2D characters, vehicles, and 3D scenes with different characters at different propagation distances.

Funder

Sistema General de Regalías de Colombia

CODI-Universidad de Antioquia-UdeA

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3