Orbital angular momentum spectra of twisted Laguerre-Gaussian Schell-model beams propagating in weak-to-strong Kolmogorov atmospheric turbulence

Author:

Wang Haiyun,Yang Zhaohui,Liu Lin,Chen YahongORCID,Wang Fei,Cai Yangjian1

Affiliation:

1. Shandong Normal University

Abstract

The presence of atmospheric turbulence in a beam propagation path results in the spread of orbital angular momentum (OAM) modes of laser beams, limiting the performance of free-space optical communications with the utility of vortex beams. The knowledge of the effects of turbulence on the OAM spectrum (also named as spiral spectrum) is thus of utmost importance. However, most of the existing studies considering this effect are limited to the weak turbulence that is modeled as a random complex “screen” in the receiver plane. In this paper, the behavior of the OAM spectra of twisted Laguerre-Gaussian Schell-model (TLGSM) beams propagation through anisotropic Kolmogorov atmospheric turbulence is examined based on the extended Huygens-Fresnel integral which is considered to be applicable in weak-to-strong turbulence. The discrepancies of the OAM spectra between weak and strong turbulence are studied comparatively. The influences of the twist phase and the anisotropy of turbulence on the OAM spectra during propagation are investigated through numerical examples. Our results reveal that the twist phase plays a crucial role in determining the OAM spectra in turbulence, resisting the degeneration of the detection mode weight by appropriately choosing the twist factor, while the effects of the anisotropic factors of turbulence on the OAM spectra seem to be not obvious. Our findings can be applied to the analysis of OAM spectra of laser beams both in weak and strong turbulence.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Local Science and Technology Development Project of the Central Government

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3