Affiliation:
1. Huazhong University of Science and Technology
2. Shenzhen Huazhong University of Science and Technology Research Institute
Abstract
A miniaturized fiber optic hydrophone (FOH) based on a composite metal diaphragm with an air back cavity and a high finesse extrinsic Fabry-Perot interferometric (EFPI) scheme for low-frequency underwater acoustic sensing is proposed and experimentally demonstrated in this paper. A composite metal diaphragm is used to improve the stability of the hydrophone. A balance channel is used to equilibrate the hydrostatic pressure and maintain an air cavity, which improves the mechanical sensitivity. In addition, a white light interferometry (WLI) phase demodulation is used to demodulate the high finesse interferometer consisted of the fiber collimator end face and the diaphragm, which improves the phase sensitivity. Experimental results show that the enhanced phase sensitivity of the hydrophone is about −122.5 dB re 1 rad/µPa @ 200 Hz and the sensitivity fluctuation is below 2.5 dB between 3 Hz and 400 Hz, while the minimal detectable pressure (MDP) is 63.7 µPa/Hz1/2 @ 400 Hz. Due to its miniaturized structure and high sensitivity, the FOH may have an enormous potential in underwater target detection.
Funder
National Natural Science Foundation of China
NSFC-RS Exchange Programme
Science, Technology and Innovation Commission of Shenzhen Municipality
Science Fund for Creative Research Groups of the Nature Science Foundation of Hubei
Subject
Atomic and Molecular Physics, and Optics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献