Affiliation:
1. Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments
2. Tianjin Medical University Cancer Institute & Hospital
3. Key Laboratory of Cancer Prevention and Therapy
4. National Clinical Research Center for Cancer
5. University of Wisconsin-Madison
6. Dartmouth College
Abstract
Cherenkov imaging is a unique verification tool that could provide both dosimetric and tissue functional information during radiation therapy. However, the number of interrogated Cherenkov photons in tissue is always limited and tangled with stray radiation photons, severely frustrating the measurement the signal-to-noise ratio (SNR). As such, here, a noise-robust photon-limited imaging technique is proposed by comprehensively exploiting the physical rationale of low-flux Cherenkov measurements together with the spatial correlations of the objects. Validation experiments confirmed that the Cherenkov signal could be promisingly recovered with high SNR by irradiating at as few as one x ray pulse from a linear accelerator (10 mGy dose), and the Cherenkov excited luminescence imaging depth can be extended by >100% on average, for most concentrations of phosphorescent probe. This approach demonstrates that improved applications in radiation oncology could be seen when signal amplitude, noise robustness, and temporal resolution are comprehensively considered in the image recovery process.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin Municipal Science and Technology Commission
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献