Amplitude gradient-based metasurfaces for off-chip terahertz wavefront shaping

Author:

Lyu Wen1,Huang Jianzhi,Yin Shengqi,Wang Xukang1,Liu Jiaming1ORCID,Fang XuORCID,Geng Hua1

Affiliation:

1. Tsinghua University

Abstract

Metasurfaces provide an effective technology platform for manipulating electromagnetic waves, and the existing design methods all highlight the importance of creating a gradient in the output phase across light scattering units. However, in the emerging research subfield of meta-waveguides where a metasurface is driven by guided modes, this phase gradient-oriented approach can only provide a very limited emission aperture, significantly affecting the application potential of such meta-waveguides. In this work, we propose a new design approach that exploits the difference between meta-atoms in their light scattering amplitude. By balancing this amplitude gradient in the meta-atoms against the intensity decay in the energy-feeding waveguide, a large effective aperture can be obtained. Based on this new design approach, three different wavefront shaping functionalities are numerically demonstrated here on multiple devices in the terahertz regime. They include beam expanders that radiate a plane wave, where the beam width can increase by more than 900 times as compared to the guided wave. They also include a metalens that generates a Bessel-beam focus with a width 0.59 times the wavelength, and vortex beam generators that emit light with a tunable topological charge that can reach −30. This amplitude gradient design approach could benefit a variety of off-chip light shaping applications such as remote sensing and 6G wireless communications.

Funder

Royal Society

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3