Space–time wave packets with reduced divergence and tunable group velocity generated in free space after multi-mode fiber propagation

Author:

Zou KaihengORCID,Pang KaiORCID,Song HaoORCID,Karpov Maxim1ORCID,Su XinzhouORCID,Zhang RunzhouORCID,Song HaoqianORCID,Zhou Huibin,Kippenberg Tobias J.1,Tur Moshe2,Willner Alan E.3

Affiliation:

1. École Polytechnique Fédérale de Lausanne (EPFL)

2. Tel Aviv University

3. University of Southern California

Abstract

Previously, space–time wave packets (STWPs) have been generated in free space with reduced diffraction and a tunable group velocity by combining multiple frequency comb lines each carrying a single Bessel mode with a unique wave number. It might be potentially desirable to propagate the STWP through fiber for reconfigurable positioning. However, fiber mode coupling might degrade the output STWP and distort its propagation characteristics. In this Letter, we experimentally demonstrate STWP generation and propagation over 1-m graded-index multi-mode fiber. Fiber mode coupling is mitigated by pre-distortion according to the inverse matrix of the fiber mode coupling matrix. Measurement of the STWP at the fiber output shows that its group velocity can vary from 1.0042c to 0.9967c by tuning the wave number of the Bessel mode on each frequency. The measured time-averaged intensity profiles show that the beam radius remains similar after 150-mm free-space propagation after exiting the fiber.

Funder

Office of Naval Research

Vannevar Bush Faculty Fellowship sponsored by the Basic Research Office of the Assistant Secretary of Defense (ASD) for Research and Engineering (R&E) and funded by the Office of Naval Research

Qualcomm Innovation Fellowship

Defense University Research Instrumentation Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3