Direct performance comparison of antiresonant and Kagome hollow-core fibers in mid-IR wavelength modulation spectroscopy of ethane

Author:

Jaworski Piotr1ORCID,Wu Dakun23ORCID,Yu Fei23ORCID,Krzempek Karol1ORCID

Affiliation:

1. Wroclaw University of Science and Technology

2. University of Chinese Academy of Sciences

3. Chinese Academy of Sciences

Abstract

In this paper, we experimentally asses the performance of wavelength modulation spectroscopy-based spectrometers incorporating 1.3 m-long gas absorption cells formed by an antiresonant hollow core fiber (ARHCF) and a Kagome hollow core fiber. To evaluate the discrepancies with minimum methodology error, the sensor setup was designed to test both fibers simultaneously, providing comparable measurement conditions. Ethane (C2H6) with a transition located at 2996.88 cm−1 was chosen as the target gas. The experiments showed, that due to better light guidance properties, the ARHCF-based sensor reached a minimum detection limit of 4 ppbv for 85 s integration time, which is more than two times improvement in comparison to the result obtained with the Kagome fiber.

Funder

Narodowe Centrum Nauki

National Key Research and Development Program of China

Chinese Academy of Sciences

National Natural Science Foundation of China

International Science and Technology Cooperation Programme

South China University of Technology, Key Laboratory of Fiber Laser Materials and Applied Techniques

STI2030 – Major Projects

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3