Interactive zoom display in a smartphone-based digital holographic microscope for 3D imaging

Author:

Nagahama Yuki

Abstract

Digital holography has applications in bio-imaging because it can simultaneously obtain the amplitude and phase information of a microscopic sample in a single shot, thus facilitating non-contact, noninvasive observation of the 3D shape of transparent objects (phase objects, which can be mapped with the phase information) and moving objects. The combination of digital holography and microscopy is called digital holographic microscopy (DHM). In this study, we propose a smartphone-based DHM system for 3D imaging that is compact, inexpensive, and capable of observing objects in real time; this system includes an optical system comprising a 3D printer using commercially available image sensors and semiconductor lasers; further, an Android-based application is used to reconstruct the holograms acquired by this optical system, thus outlining the amplitude and phase information of the observed object. Additionally, by utilizing scalable diffraction calculation methods and touchscreen interaction, we implemented zoom functionality through pinch-in gestures. The study results showed that the DHM system successfully obtained the amplitude and phase information of the observed object via the acquired holograms in an almost real-time manner. Thus, this study showed that it is possible to construct a low-cost and compact DHM system that includes a 3D printer to construct the optical system and a smartphone application to reconstruct the holograms. Furthermore, this smartphone-based DHM system’s ability to capture, reconstruct, and display holograms in real time demonstrates its superiority and novelty, to the best of our knowledge, over existing systems. This system is also expected to contribute to biology fieldwork and pathological diagnosis in remote areas.

Funder

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3