Affiliation:
1. California Institute of Technology
Abstract
We describe the design of optimized multilayer dielectric coatings for precision laser interferometry. By setting up an appropriate cost function and then using a global optimizer to find a minimum in the parameter space, we were able to realize coating designs that meet the design requirements for spectral reflectivity, thermal noise, absorption, and tolerances to coating fabrication errors. We also present application of a Markov-Chain Monte Carlo (MCMC) based parameter estimation algorithm that can infer thicknesses of dielectric layers in a coating, given a measurement of the spectral reflectivity. This technique can be a powerful diagnostic tool for both commercial coating manufacturers, and the community using dielectric mirrors for precision metrology experiments.
Funder
Gordon and Betty Moore Foundation
Barish-Weiss Postdoctoral Fellowship
National Science Foundation