Nondestructive determination of SSC in an apple by using a portable near-infrared spectroscopy system

Author:

Zhang Yizhe1,Huang Jipeng1,Zhang Qiulei1,Liu Jinwei1,Meng Yanli1,Yu Yan2

Affiliation:

1. Northeast Normal University

2. Jilin University

Abstract

The soluble solids content (SSC) is an important factor in the internal quality detection of apples. It is essential to have reliable and high-speed measurement of the SSC. However, almost all traditional equipment is inconvenient and expensive. We designed a handheld nondestructive SSC detector based on near-infrared (NIR) spectroscopy, which is composed of a portable NIR spectrometer, cloud server, smartphone app, and prediction model of SSC. We preprocessed the spectrum with multiplicative scatter correction (MSC), standard normal variable transformation (SNV), and Savitzky–Golay (S–G) smoothing algorithms. Besides, the linear weight reduction of the particle swarm optimization algorithm is carried out, and we establish the model of an extreme learning machine optimized with the improved particle swarm optimization (IPSO-ELM) algorithm. The R 2 , root mean square error of prediction (RMSEP), and residual prediction deviation (RPD) of the model are 0.993, 0.0155, and 11.6, respectively, which are better than the traditional model obviously. In addition, the number of wavelengths reduced from 228 to 70 as the model is simplified with the uninformative variable elimination (UVE) method. The time of training is reduced by 29.30% compared with the original spectrum. It can be verified that the IPSO-ELM model has good prediction performance, and the NIR diffuse reflectance spectroscopy is a reliable nondestructive measurement of SSC in apples.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3