Effects of different cladding materials on orbital angular momentum modes propagating in photonic crystal fibers

Author:

Sheng Ning1,Fu Haihao1,Meng Tongyu2,Wang Jianxin1,Liu Wei1,Lv Jingwei1,Yi Zao3ORCID,Yang Lin1,Chu Paul K.4,Liu Chao1

Affiliation:

1. Northeast Petroleum University

2. Leicester International Institute, Dalian University of Technology

3. Southwest University of Science and Technology

4. City University of Hong Kong

Abstract

With the development of orbital angular momentum (OAM) photonic crystal fibers (PCFs) for more efficient communication, fiber claddings are important to the performance. In this paper, the influence of SiO2 and four new optical materials, which are amethyst, SSK2, SF11, and LaSF09, as cladding materials, on the OAM mode characteristics is studied based on a common PCF for OAM transmission. In addition, the effective index difference, dispersion, confinement loss, and other properties of OAM modes transmitted in the five materials are derived by the finite element method. After in-depth analysis, universal rules can be obtained as guidelines for optimization of PCF in the future for improving the efficiency of optical fiber communication. Through chart analysis, it can be concluded that when materials of high effective refractive indices are used as cladding materials for PCF, the dispersion, nonlinear coefficient, confinement loss, mode purity, and other properties are significantly improved. Lower dispersion and confinement loss are more conducive to long-distance communication transmission. The decrease in nonlinear coefficient represents a better effect in suppressing nonlinear effects, and the increase in numerical aperture and mode purity respectively improves the transmission efficiency and stability of OAM communication. These conclusions provide universal rules for high-quality communication in the future.

Funder

Scientific Research Fund of Sichuan Province Science and Technology Department

City University of Hong Kong

City University of Hong Kong Strategic Research Grant

China Postdoctoral Science Foundation

Natural Science Foundation of Heilongjiang Province

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3