Micro-dimensional oscillation-based optimization for a dielectric metalens in the mid-infrared

Author:

Gu Tianqi1,Gao Xiang1,Tang Dawei2ORCID,Lin Shuwen1,Fang Bing

Affiliation:

1. Fuzhou University

2. University of Huddersfield

Abstract

In the past few decades, there has been significant progress made in metasurfaces and integrated and miniaturized optical devices. As one of the most prominent applications of metasurfaces, the metalens is the subject of significant research. In this paper, for achieving better focusing performance of the initial metalens designed by the Pancharatnam–Berry (PB) phase, a concept of micro-dimensional oscillation is proposed to optimize the geometric parameters of nanopillars. A strategy of grouping iteration is proposed to reduce the loss rate and computational effort in a holistic way. Its essence is to divide an extremely large-scale optimization space into many overlapping groups. Meanwhile, an improved genetic-simulated annealing (IGSA) algorithm is presented for the optimal solution of each group. By introducing the adaptive crossover and mutation probabilities in traditional genetic algorithms, the IGSA algorithm has both strong global searching capability and excellent local searching capability. After optimization, the maximum field intensity of the central hot spot can be increased by about 8% compared to the initial metalens. Moreover, the field intensity of the side lobes around the hot spot is almost constant, and the central hot spot increases, which provides a potential for the realization of high imaging contrast.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3