Optimizing auxiliary laser heating for Kerr soliton microcomb generation

Author:

Xiao Yanlan,Qian Sirong,Bai Qingsong1,Wen Huashun2,Geng YongORCID,Wang Yan,Lai Hongan,Yao Baicheng,Qiu Kun,Xu Jing3ORCID,Zhou Heng

Affiliation:

1. Chengdu Spaceon Electronics Corporation Ltd.

2. Institute of Semiconductors, Chinese Academy of Sciences

3. Huazhong University of Science and Technology

Abstract

Auxiliary laser heating has become a widely adopted method for Kerr soliton frequency comb generation in optical microcavities, thanks to its reliable and easy-to-achieve merits for solving the thermal instability during the formation of dissipative Kerr solitons. Here, we conduct optimization of auxiliary laser heating by leveraging the distinct loss and absorption characteristics of different longitudinal and polarization cavity modes. We show that even if the auxiliary and pump lasers enter orthogonal polarization modes, their mutual photothermal balance can be efficient enough to maintain a cavity thermal equilibrium as the pump laser enters the red-detuning soliton regime, and by choosing the most suitable resonance for the auxiliary and pump lasers, the auxiliary laser power can be reduced to 20% of the pump laser and still be capable of warranting soliton generation. Moreover, we demonstrate soliton comb generation using integrated laser modules with a few milliwatt on-chip pump and auxiliary powers, showcasing the potential for further chip integration of the auxiliary laser heating method.

Funder

State Key Laboratory of Advanced Optical Communication Systems and Networks

Sichuan Province Science and Technology Support Program

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3