Affiliation:
1. Suzhou City University
2. University of Miami
3. Shandong Normal University
Abstract
Propagation of the coherence-orbital angular momentum (COAM) matrix of partially coherent beams in homogeneous and isotropic turbulence, e.g., atmosphere, is formulated using the extended Huygens-Fresnel principle. It is found that under the effect of turbulence the elements in the COAM matrix will generally be affected by other elements, resulting in certain OAM mode dispersion. We show that if turbulence is homogeneous and isotropic, there exists an analytic “selection rule” for governing such a dispersion mechanism, which states that only the elements having the same index difference, say l – m, may interact with each other, where l and m denote OAM mode indices. Further, we develop a wave-optics simulation method incorporating modal representation of random beams, multi-phase screen method and the coordinate transformation to simulate propagation of the COAM matrix of any partially coherent beam propagating in free space or in turbulent medium. The simulation method is thoroughly discussed. As examples, the propagation characteristics of the most representative COAM matrix elements of circular and elliptical Gaussian Schell-model beams in free space and in turbulent atmosphere are studied, and the selection rule is numerically demonstrated.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Local Science and Technology Development Project of the Central Government
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献