Design of a single aspheric beam homogenizer for accurate particle sizing application

Author:

Li Jingwen1,Zhao Ruqiang,Bi Jiefang,Engarnevis Amin2

Affiliation:

1. McMaster University

2. Nanozen Industries Co. Ltd.

Abstract

Understanding, detection, and accurate monitoring of particles are of utmost importance in various industrial fields and environmental science. Optical sensors allow for real-time monitoring of particles at the single species level by analyzing the elastically scattered light intensities. Nevertheless, since most laser diodes employed for illuminating the particle generally follow a Gaussian-type intensity distribution, the non-uniform energy distribution across the aerosol channel causes considerable errors in the conversion of the scattered light intensities into the actual particle sizes. In order to achieve uniform illumination of particles across the aerosol channel and improve the particle sizing and classification accuracy, we design and customize a single aspheric lens, which efficiently converts the divergent Gaussian beam profile of a TO packaged laser diode into a one-dimensional flattop beam profile along the fast axis at the desired working distance. A beam uniformity better than 5% has been achieved. Furthermore, we demonstrate a practical sensing application using the designed lens for accurate particle sizing, and an obvious improvement in the accuracy has been achieved compared to that based on off-the-shelf aspheric lenses. The singlet beam homogenizer developed in this work has many appealing features (e.g., high uniformity and energy efficiency, compactness, and low stray light), which is especially relevant for building portable particle sensors in order to address various industrial applications where on-site or remote metrology and classification of particles are required.

Funder

China Scholarship Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3