All-day uninterrupted thermoelectric generator by simultaneous harvesting of solar heating and radiative cooling

Author:

Liu Jing12,Li Degui12,Ma Wenzhuang123ORCID,Chen Yushan12,Dou Chao12,Meng Dan12ORCID,He Qiyao12,Li Xiangyu12,Deng Xuchu12,Cai Haoyuan12

Affiliation:

1. Jimei University

2. Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing

3. University of Electronic Science and Technology of China

Abstract

Passive power generation has recently stimulated interest in thermoelectric generators (TEGs) using the radiative cooling mechanism. However, the limited and unstable temperature difference across the TEGs significantly degrades the output performance. In this study, an ultra-broadband solar absorber with a planar film structure is introduced as the hot side of the TEG to increase the temperature difference by utilizing solar heating. This device not only enhances the generation of electrical power but also realizes all-day uninterrupted electrical output due to the stable temperature difference between the cold and hot sides of the TEG. Outdoor experiments show the self-powered TEG obtains maximum temperature differences of 12.67 °C, 1.06 °C, and 5.08 °C during sunny daytime, clear nighttime, and cloudy daytime, respectively, and generates output voltages of 166.2 mV, 14.7 mV, and 95 mV, respectively. Simultaneously, the corresponding output powers of 879.25 mW/m2, 3.85 mW/m2, and 287.27 mW/m2 are produced, achieving 24-hour uninterrupted passive power generation. These findings propose a novel strategy to combine solar heating and outer space cooling by a selective absorber/emitter to generate all-day continuous electricity for unsupervised small devices.

Funder

National Natural Science Foundation of China

Youth Talent Support Program of Fujian Province

Science Fund for Distinguished Young Scholars of Fujian Province

Science and Technology Major Project of Fujian Province

Innovation Fund for Young Scientists of Xiamen

Marine and Fishery Development Special Fund of Xiamen

Youth Talent Support Program of Jimei University

Xiamen Ocean and Fishery Development Special Fund Project

Xiamen Key Laboratory of Marine Intelligent Terminal R&D and Application

Scientific Research Foundation of Jimei University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3