Proton radiation effects on optically transduced silicon carbide microdisk resonators

Author:

Jia Hao12,McCandless Jonathan P.1,Chen Hailong1,Liao Wenjun3,Zhang En Xia3,McCurdy Michael3,Reed Robert A.3,Schrimpf Ronald D.3,Alles Michael L.3,Feng Philip X.-L.1ORCID

Affiliation:

1. Case Western Reserve University

2. Shanghai Institute of Microsystem and Information Technology

3. Vanderbilt University

Abstract

Circular microdisk mechanical resonators vibrating in their various resonance modes have emerged as important platforms for a wide spectrum of technologies including photonics, cavity optomechanics, optical metrology, and quantum optics. Optically transduced microdisk resonators made of advanced materials such as silicon carbide (SiC), diamond, and other wide- or ultrawide-bandgap materials are especially attractive. They are also of strong interest in the exploration of transducers or detectors for harsh environments and mission-oriented applications. Here we report on the first experimental investigation and analysis of energetic proton radiation effects on microdisk resonators made of 3C-SiC thin film grown on silicon substrate. We fabricate and study microdisks with diameters of ∼48 µm and ∼36 µm, and with multimode resonances in the ∼1 to 20 MHz range. We observe consistent downshifts of multimode resonance frequencies, and measure fractional frequency downshifts from the first three flexural resonance modes, up to ∼-3420 and -1660 ppm for two devices, respectively, in response to 1.8 MeV proton radiation at a dosage of 1014/cm2. Such frequency changes are attributed to the radiation-induced Young’s modulus change of ∼0.38% and ∼0.09%, respectively. These devices also exhibit proton detection responsivity of ℜ ≈ -5 to -6 × 10−6 Hz/proton. The results provide new knowledge of proton radiation effects in SiC materials, and may lead to better understanding and exploitation of micro/nanoscale devices for harsh-environment sensing, optomechanics, and integrated photonics applications.

Funder

National Science Foundation

Defense Threat Reduction Agency

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deforming Single Soft Microparticles in Liquid Using Membrane Resonators;2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS);2024-01-21

2. Photonics for Harsh Environments: introduction to the special issue;Optical Materials Express;2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3