Fresnel incoherent compressive holography toward 3D videography via dual-channel simultaneous phase-shifting interferometry

Author:

Wang Huiyang1,Han Xianxin1,Wen Tianzhi1,Wang Yuheng1,Liu Hongzhan1ORCID,Lu Xiaoxu1ORCID,Rosen Joseph2ORCID,Zhong Liyun1

Affiliation:

1. South China Normal University

2. Ben-Gurion University of the Negev

Abstract

Fresnel incoherent correlation holography (FINCH) enables high-resolution 3D imaging of objects from several 2D holograms under incoherent light and has many attractive applications in motionless 3D fluorescence imaging. However, FINCH has difficulty implementing 3D imaging of dynamic scenes since multiple phase-shifting holograms need to be recorded for removing the bias term and twin image in the reconstructed scene, which requires the object to remain static during this progress. Here, we propose a dual-channel Fresnel noncoherent compressive holography method. First, a pair of holograms with π phase shifts obtained in a single shot are used for removing the bias term noise. Then, a physic-driven compressive sensing (CS) algorithm is used to achieve twin-image-free reconstruction. In addition, we analyze the reconstruction effect and suitability of the CS algorithm and two-step phase-shift filtering algorithm for objects with different complexities. The experimental results show that the proposed method can record hologram videos of 3D dynamic objects and scenes without sacrificing the imaging field of view or resolution. Moreover, the system refocuses images at arbitrary depth positions via computation, hence providing a new method for fast high-throughput incoherent 3D imaging.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3