Affiliation:
1. Sun Yat-sen University
2. Guangdong University of Technology
3. Hefei University of Technology
Abstract
The practical cable design for optical submarine communications has a limited fiber pair count due to the mechanical considerations of cable weight and size. Consequently, multi-core fibers (MCFs) could exhibit higher capacity than conventional single-mode fibers (SMFs) thanks to space division multiplexing (SDM). That is because the power supply to a submarine cable is fed by the voltage difference between shores. Under the power-limited condition, SDM improves the cable capacity by using more paths which outperforms the SMF link whose capacity approximately complies with a logarithmic relationship to optical power. At the same time, fiber nonlinearity can be alleviated by the reduced power density of transmitted light in MCFs, due to the increased spatial diversity and mode coupling among coupled cores. In this work, we theoretically investigate the potentials of MCFs including weakly-coupled multicore fiber (WC-MCF) and strongly-coupled multicore fiber (SC-MCF) as the propagation media for submarine communications across the Atlantic and the Pacific. To fairly compare the performances of SMFs- and MCFs-based submarine cables, the Gaussian noise (GN) model for SDM links is employed to optimize the systematic settings including spatial multiplicity and single span length. Then, we develop an SDM and wavelength division multiplexing (WDM) fiber transmission model based on coupled nonlinear Schrodinger equations (CNSE) to investigate the optical filed coupling effect in MCFs-based cables. The developed transmission model has been self-examined by measuring the inter-core crosstalk (IC-XT) and spatial mode dispersion (SMD), referring to the set values. As indicated by the theoretical analysis, the WC-MCFs cable exhibits a larger capacity than the SMFs cable, when the fiber pair count is limited below 32. Moreover, the SC-MCFs cable outperforms the WC-MCFs cable thanks to the reduced fiber nonlinearity due to the random mode coupling and the assistance of multiple-input and multiple-output digital signal processing (MIMO-DSP). At last, the marginal influences of IC-XT, SMD, and insertion loss of Fan-in and Fan-out couplers are also analyzed for the MCFs cable.
Funder
National Natural Science Foundation of China
Hong Kong Polytechnic University
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献