Constrained multi-objective optimization problem model to design multi-band terahertz metamaterial absorbers

Author:

Ma Limin1,Wang Zhenghua1,Feng Linghua,Dong WendeORCID,Guo Wanlin12

Affiliation:

1. Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education

2. Nanjing University of Aeronautics and Astronautics

Abstract

The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained multi-objective optimization problem (CMOP) model is proposed to intelligently obtain the optimized geometrical parameters of the designed MA for optimal multi-band absorption. The proposed multi-band terahertz metamaterial absorber is formed by a patterned metallic patches (symmetric snowflake-shaped resonators) layer and a continuous metallic layer separated by a dielectric layer. The simulation results show that there are three discrete narrow resonance peaks with the absorption of 99.1%, 90.0%, and 99.9% in the range of 0.5–2 THz after being optimized by the proposed CMOP model. The reflection loss of all resonance modes is improved significantly compared with the conventional brute-force approach. Specifically, reflection loss at the highest resonance frequency is suppressed from -6.76 dB to -28.17 dB. Consequently, the reported MA design can be used as a refractive index sensor with the highest sensitivity of 495 GHz/RIU and the figure of merit (FoM) of 8.9 RIU−1 through a refractive index ranging from 1.0 to 1.6 at the analyte thickness of 18.5 μm. It is worth noting that most of the liquid samples have a refractive index ranging from 1.0 to 1.6. Therefore, the reported sensor can be used for liquid detection with high sensitivity.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3