Optical design and precision analysis of a single-line-array pendulum sweep high-resolution mapping camera

Author:

Cui Yazhen12,Liu Chunyu2,Liu Shuai2,Xu Minglin2,Xie Peng2

Affiliation:

1. University of Chinese Academy of Sciences

2. Chinese Academy of Sciences

Abstract

With the improvement of the satellite resolution, it is urgent to develop the single-line-array mapping camera. However, the camera accuracy is influenced by the satellite attitude’s rapid maneuvering during the imaging process. In our study, a coaxial four-mirror optical system with a field bias with a focal length of 7050 mm, F-number of 10.8, field of view of 1.2°, and spectral range of 450–800 nm is designed. By combining mathematical modeling and ray tracing, the offset of the camera interior orientation elements caused by the misalignment of the secondary mirror is derived. The simulation results show that the maximum relative error does not exceed 2.119%. Besides, a desensitization design method based on the magnification parameter control method is proposed, and the results show that the sensitivity of camera interior orientation elements to the secondary mirror is reduced, indicating the effectiveness of the system desensitization design, which is of great significance for the improvement of camera accuracy.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3