Abstract
In this paper, we present a novel low-light image enhancement method by combining optimization-based decomposition and enhancement network for simultaneously enhancing brightness and contrast. The proposed method works in two steps including Retinex decomposition and illumination enhancement, and can be trained in an end-to-end manner. The first step separates the low-light image into illumination and reflectance components based on the Retinex model. Specifically, it performs model-based optimization followed by learning for edge-preserved illumination smoothing and detail-preserved reflectance denoising. In the second step, the illumination output from the first step, together with its gamma corrected and histogram equalized versions, serves as input to illumination enhancement network (IEN) including residual squeeze and excitation blocks (RSEBs). Extensive experiments prove that our method shows better performance compared with state-of-the-art low-light enhancement methods in the sense of both objective and subjective measures.
Funder
Ministry of Science and ICT, South Korea
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献