Abstract
Automated identification of single-pointer meter identification in substations is widely used in the construction of digital substations and it must accurately identify the value of the pointer meter. Current single-pointer meter identification methods are not universally applicable and can only identify one type of meter. In this study, we present a hybrid framework for single-pointer meter identification. First, the input image of the single-pointer meter is modeled to gain a priori knowledge, including the template image, dial position information, the pointer template image, and scale value positions. Based on a convolutional neural network to generate the input image and the template image feature points, image alignment is then applied through a feature point match to mitigate slight changes in the camera angle. Next, a pixel loss-free method of arbitrary point image rotation correction is presented for rotation template matching. Finally, by rotating the input gray mask image of the dial and matching it to the pointer template to get the optimal rotation angle, the meter value is calculated. The experimental findings demonstrate the method’s effectiveness in identifying nine different types of single-pointer meters in substations with various ambient illuminations. This study provides a feasible reference for substations to identify the value of different types of single-pointer meters.
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Reference35 articles.
1. A novel scale recognition method for pointer meters adapted to different types and shapes;Lai,2019
2. Image recognition system of pointer meter in substation;Li,2020
3. Pointer-type meter automatic reading from the complex environment based on visual saliency;Zhang,2016
4. Intelligent pointer meter interconnection solution for data collection in farmlands
5. Exploring Spatial Significance via Hybrid Pyramidal Graph Network for Vehicle Re-Identification
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献