Affiliation:
1. Muroran Institute of Technology
2. Jozef Stefan Institute
Abstract
We report an experimental approach to produce spatially localized photoinduced superconducting state in a cuprate superconductor using optical vortices with ultrafast pulses. The measurements were carried out using coaxially aligned three-pulse time-resolved spectroscopy, in which an intense vortex pulse was used for coherent quenching of superconductivity and the resulting spatially modulated metastable states were analyzed by the pump-probe spectroscopy. The transient response after quenching shows a spatially localized superconducting state that remains unquenched at the dark core of the vortex beam for a few picoseconds. Because the quenching is instantaneously driven by photoexcited quasiparticles, the vortex beam profile can be transferred directly to the electron system. By using the optical vortex-induced superconductor, we demonstrate spatially resolved imaging of the superconducting response and show that the spatial resolution can be improved using the same principle as that of super-resolution microscopy for fluorescent molecules. The demonstration of spatially controlled photoinduced superconductivity is significant for establishing a new method for exploring novel photoinduced phenomena and applications in ultrafast optical devices.
Funder
Japan Society for the Promotion of Science
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献