High sensitivity fiber cladding SPR strain sensor based on V-groove structure

Author:

Wei Yong1,Li Lingling1,Liu Chunlan1,Wang Rui1,Zhao Xiaoling1,Ran Ze1,Ren Zhuo1,Jiang Tianci1

Affiliation:

1. Chongqing Three Gorges University

Abstract

How to couple the light in the fiber core to the cladding is an urgent issue that need to be done for the fabrication of the fiber-cladding SPR sensor, and there is no report about the fiber SPR strain sensor. Hereby, we propose and demonstrate a high sensitivity fiber cladding SPR strain sensor based on V-groove structure. By CO2 laser, the V-groove is fabricated on the single-mode fiber, and the light in the fiber core is effectively coupled to the cladding. The cladding 2cm behind the V-groove is coated with sensing gold film, and a multimode fiber is spliced with the sensing probe to construct the novel fiber cladding SPR sensor. On the basis of the investigation of the effects of different V-groove depth, number and period on the performance of fiber SPR refractive index sensor, a high sensitivity strain SPR sensor is designed and fabricated by employing the characteristic that the V-groove will deform with strain. The testing results indicate that the average refractive index sensitivity of the sensor is 2896.4nm/RIU, and the strain wavelength sensitivity is 25.92pm/µε which is much higher than that of the fiber interference and grating strain sensors, and the strain light intensity sensitivity is -4.4×10−4 a.u./µε. The proposed fiber cladding SPR strain sensor has the advantages of simple structure and convenient manufacture, and can be used for working in a narrow space.

Funder

Fundamental Research Funds for Chongqing Three Gorges University of China

Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area

Science and Technology Project Affiliated to the Education Department of Chongqing Municipality

Chongqing Natural Science Foundation

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3