Experimental demonstration of weak-light inter-spacecraft clock jitter readout for TianQin

Author:

Zeng Hanyu1,Yan Hao2ORCID,Xie Siyuan1,Jiang Sicheng1,Li Yingzi1,Pan Yuhang1,He Diaomin1,Du Yuanbo1ORCID,Yeh Hsien-chi1

Affiliation:

1. Sun Yat-sen University (Zhuhai Campus)

2. Huazhong University of Science and Technology

Abstract

The space-based gravitational wave detection mission, TianQin, requires high-level synchronization between independent clocks of all spacecrafts to extract the gravitational wave signals. It is necessary to measure the inter-spacecraft relative clock jitter based on laser phase-sideband clock transfer. The main challenge is the tracking and locking of clock sideband beatnote signals with low signal-to-noise ratio and frequency variation. In this paper, a systematic scheme of inter-spacecraft clock jitter readout is reported. The requirement of the clock transfer link for TianQin based on the time-delay interferometry algorithm is derived. A bi-directional laser interferometer system with a transmission optical power below 1 nW and a time delay of ∼50 µs is built up to demonstrate the weak-light clock transfer. In this scheme, frequency modulation is performed on the laser to simulate the inter-spacecraft Doppler frequency shift and its variation. Based on electrical and optical clock transfer comparison experiments, it is demonstrated that the GHz frequency synthesizer is the main noise source below the 50 mHz frequency range. The residual clock jitter noise introduced by the optical transfer link is below 40 fs/Hz1/2 above the 6 mHz frequency range, and the fractional frequency instability is less than 6.7 × 10−17 at 1000 s, which meets the requirement of the TianQin mission. Ultimately, The carrier phase measurement accuracy reaches 1 × 10−4 cycles/Hz1/2 above 6 mHz after differential clock noise correction using measured clock jitter.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3