Tunable angle-selective optical transparency induced by photonic topological transition in Dirac semimetals-based hyperbolic metamaterials

Author:

Wang Qin1ORCID,Zhang Liwei2,Cai Xiaolin1,Cencillo-Abad Pablo3,Ou Jun-Yu4ORCID

Affiliation:

1. Henan Polytechnic University

2. Anqing Normal University

3. University of Central Florida

4. University of Southampton

Abstract

The tunable angle-selective transparency of hyperbolic metamaterials consisting of various multilayers of Dirac semimetal and dielectric materials are theoretically and numerically studied in the terahertz range. Three stack configurations are considered: alternating, sandwiched, and disordered. It is found that the proposed structures exhibit strong optical angular selectivity induced by photonic topological transition for transverse magnetic waves. Interestingly, the topological transition frequency can be flexibly modulated by changing the Fermi energy, temperature, and the releasing time of the Dirac semimetal, as well as the thickness ratio of the dielectric and semimetal layers. It is also noticed that the angular optical transparency properties are independent of the order of the proposed structure even in alternating/disordered/random configurations if the total thickness ratio of the semimetal to dielectric are the same, which makes the properties particularly easy to realize experimentally. The proposed hyperbolic metamaterial structures present a promising opportunity for wavefront engineering, offering crucial properties for applications in private screens, optical detectors, and light manipulation.

Funder

Natural Science Foundation of Anhui Higher Education Institutions of China

National Natural Science Foundation of China

Foundation of Henan Educational Committee

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3