Over 3.8 W, 3.4 µm picosecond mid-infrared parametric conversion based on a simplified one-to-many scheme

Author:

Zhao Junqing1ORCID,Chen Yewang,Ouyang Deqin,Liu Minqiu,Li Chunbo,Wu Xu,Xiong Xianwei2,Mo Liqiang2,Wang MengORCID,Liu Xing,Lv Qitao3,Ruan ShuangchenORCID

Affiliation:

1. Shenzhen Technology University

2. Shenzhen University

3. Han’s Laser Technology Industry Group Co. Ltd.

Abstract

In this paper, we demonstrate a simplified one-to-many scheme for efficient mid-infrared (MIR) parametric conversion. Such a scheme is based on a continuous wave (CW) single longitudinal mode master oscillator power-amplifier (MOPA) fiber system as the signal source and a picosecond pulsed MOPA fiber system, exhibiting multiple longitudinal modes, as the pump source. The signal and pump beams are combined and co-coupled into a piece of 50-mm long 5% MgO-doped PPLN crystal for the parametric conversion. As high as ∼3.82 W average power at a central idler wavelength of ∼3.4 µm is achieved when the launched pump and signal powers are ∼41.73 and ∼11.45 W, respectively. Above some threshold value, the delivered idler power shows a roll-over effect against the signal power and saturation-like effect against the pump power. Consequently, the highest conversion efficiency is observed at such a threshold pump power. To the best of our knowledge, our result represents the highest average power produced from any single-pass parametric conversion source with >3 µm idler wavelength feeding with a CW signal. Moreover, our proposed scheme can simplify the design of parametric conversion system significantly and meanwhile make the system more robust in applications. This is attributed to two main aspects. Firstly, the scheme’s one-to-many feature can reduce wavelength sensitivity remarkably in the realization of quasi-phase-matching. Secondly, for moderate power requirement it does not always require a high peak power synchronized pulsed signal source; a CW one can be an alternative, thereby making the system free from complex time synchronization and the related time jitter.

Funder

Shenzhen Science and Technology Program

Natural Science Foundation of Top Talent of Shenzhen Technology University

National Natural Science Foundation of China

National Key Research and Development Program of China

Department of Education of Guangdong Province

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3