Abstract
In this work, we design and fabricate a compact photoelectrochemical (PEC) sensor by integrating a graphene-MoS2 heterostructure on an optical fiber tip. The graphene serves as a transparent carrier transport layer, and the MoS2 presents a photoelectrical transducer that generates photocarriers and interacts with ascorbic acid (AA) in solution. This device is used to demonstrate a self-powered detection of AA with a concentration range between 1 mM and 50 mM, and a time response of ∼ 6 ms. The device downsizes traditional PEC systems to the micrometer scale, benefiting the real-time monitoring of biochemical changes in small areas and opening the pathway for miniaturized PEC sensing applications.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献