Single-exposure quantitative differential interference contrast microscopy using bandlimited image and its Fourier transform constraints

Author:

Kong Xinyi1,Xiao Kang,Zhou Xi2ORCID,Wang Zhongyang

Affiliation:

1. University of Chinese Academy of Sciences

2. Zhejiang University

Abstract

Phase microscopy that records the bandlimited image and its Fourier image simultaneously (BIFT) is a phase retrieval method with unique and rapid convergence. In this paper, we present a single-exposure quantitative differential interference contrast (DIC) microscopy based on BIFT method. The contrasts of the recorded DIC image and its Fourier image, analyzed by simulation and experiment, can be largely improved by the initial phase difference between two sheared lights (bias), however their trends with biases are opposite. By adding the optimized bias with the compromise of the contrasts in image and Fourier space, the phase sensitivity can be improved than BIFT method only. We have experimentally demonstrated that a sample of 25 nm height can be successfully recovered from a single exposure. The presented single-exposure quantitative DIC microscopy provides a promising technique for real-time phase imaging.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3