Abstract
The light manipulation beyond the diffraction limit plays an invaluable role in modern physics and nanophotonics. In this work, we have demonstrated a strong coupling with a large Rabi splitting of 151 meV between bulk
WS
2
excitons and anapole modes in the
WS
2
-Si nanodisk heterostructure array with nanoholes as small as 50 nm radius. This result is acquired by introducing anapole modes to suppress radiative losses to confine light into subwavelength volumes and large spatial overlapping between excitons and strong optical fields. Our work shows that anapole modes may serve as a powerful way to enhance the interaction between light and matter at nanoscales, and it should pave an avenue toward high-performance all-dielectric optoelectronic applications.
Funder
National Natural Science Foundation of China
Ministry of Science and Technology of the People’s Republic of China
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献