Affiliation:
1. Beijing Institute of Technology
2. Institute of Forensic Science
3. Tsinghua University
Abstract
Stretched-pulse mode-locked (SPML) lasing based on a chirped fiber Bragg grating (CFBG) has proven to be a powerful method to generate wavelength-swept lasers at speeds of tens of megahertz. However, light transmitted through the CFBG may lead to undesirable laser oscillation that disrupts the mechanism of the laser active mode locking in the theta ring cavity. In this Letter, we demonstrate a simple and low-cost approach to suppress the transmitted light and achieve an effective duty cycle of ∼100% with only one CFBG and no need for intra-cavity semiconductor optical amplifier (SOA) modulation, extra-cavity optical buffering, and post amplification. By utilizing polarization isolation of the bi-directional CFBG, a swept laser centered at 1305 nm, with repetition rate of 10.3 MHz, optical power of 84 mW, and 3 dB bandwidth of 109 nm, is demonstrated. Ultrahigh speed 3D optical coherence tomography (OCT) structural imaging of a human palm in vivo using this swept laser is also demonstrated. We believe that this ultrahigh speed swept laser will greatly promote the OCT technique for industrial and biomedical applications.
Funder
National Natural Science Foundation of China
Tsinghua Precision Medicine Foundation
‘Bio-Brain+X’ Advanced Imaging Instrument Development Seed Grant
Beijing Nova Program
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献