Enhancing LiDAR performance using threshold photon-number-resolving detection

Author:

Wu MiaoORCID,Zhao Xiaochen,Chen Ruen,Zhang Labao1ORCID,He Weiji,Chen Qian

Affiliation:

1. Nanjing University

Abstract

Single-photon light detection and ranging (LiDAR) is widely used to reconstruct 3D scenes. Nevertheless, depth and reflectivity maps obtained by single-photon detection usually suffer from noise problems. Threshold LiDAR techniques using photon-number-resolving detectors were proposed to suppress noise by filtering low photon numbers, but these techniques renounce multiple levels of information and could not be compatible when it comes to high-noise low-signal regime. In this manuscript, we propose a detection scheme which combines the noise suppression of threshold detection with the signal amplification of photon-number-resolving detectors to further enhance LiDAR performance. The enhancement attained is compared to single-photon and threshold detection schemes under a wide range of signal and noise conditions, in terms of signal-to-noise-ratio (SNR), detection rate and false alarm rate, which are key metrics for LiDAR. Extensive simulations and real-world experiments show that the proposed scheme can reconstruct better depth and reflectivity maps. These results enable the development of high-efficient and low-noise LiDAR systems.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3