Affiliation:
1. Fudan University
2. Xi’an University of Posts and Telecommunications
Abstract
The photonics-based technology has the advantages of wide bandwidth in millimeter wave (mm-wave) communication and radar sensing systems. In the present work, we propose a novel joint communication and radar sensing functions system based on photonics at the W-band. In the proposed system, the broadband linear frequency modulated (LFM) signal and high-speed M-quadrature amplitude modulation (MQAM) signal are simultaneously obtained by heterodyning two free-running external cavity lasers (ECLs). Based on this system, a communication rate of 78 Gbit/s and a radar with a 5-GHz bandwidth is achieved. This is a good solution to incorporate a high-speed communication and high-resolution radar sensing functions system.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献