Comprehensive field pattern analysis for tailoring of reflectance in a hybrid subwavelength plasmonic grating refractive index sensor and its potential for noninvasive salivary glucose monitoring

Author:

Qayoom Taban1,Najeeb-ud-din Hakim

Affiliation:

1. Islamic University of Science and Technology

Abstract

A compact hybrid two-dimensional plasmonic subwavelength grating composed of gold and semiconductor ZnS is proposed. By implementing the finite-difference time-domain numerical technique, detailed field pattern analysis and reflectance characteristics of the grating structure are comprehensively investigated, tailored, and improved. An unfamiliar phenomenon of exponential decrease in resonance wavelength with an increase in groove width is observed, validated, and empirically modeled. This confirms that the reflectance resonance dip is because of the surface plasmon resonance in the grating structure, unlike the resonance dip obtained in the diffraction grating because of the Fabry–Perot resonance. A rigorous sensitivity analysis is performed for both generalized bulk and surface analyte detection. The surface sensitivity is observed to be 100.5 nm/RIU at dip 1 for 10-nm-surface analyte thickness. The bulk sensitivity for dip 1 and dip 2 was 104.3 nm/RIU and 800 nm/RIU, respectively. The refractive index range variation of dip 1 for the surface analyte is correlated with the refractive index of the blood by using the linear refractive index model and Gladstone–Dale law for blood. A linear regression analysis correlating blood glucose and salivary glucose with a surface analyte is used. The proposed sensor is observed to be promising for noninvasive salivary glucose monitoring with high surface sensitivity of 1.104 nm/mg/dl with a compact footprint of about 0.5 µ m × 0.2 µ m in x z dimensions.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3