Underwater image enhancement via red channel maximum attenuation prior and multi-scale detail fusion

Author:

Tao Yu1,Chen Honggang12ORCID,Peng Zijun3,Tan Renxuan

Affiliation:

1. Guangxi Normal University

2. Tianjin University of Technology

3. Yangtze University

Abstract

The underwater environment poses great challenges, which have a negative impact on the capture and processing of underwater images. However, currently underwater imaging systems cannot adapt to various underwater environments to guarantee image quality. To address this problem, this paper designs an efficient underwater image enhancement approach that gradually adjusts colors, increases contrast, and enhances details. Based on the red channel maximum attenuation prior, we initially adjust the blue and green channels and correct the red channel from the blue and green channels. Subsequently, the maximum and minimum brightness blocks are estimated in multiple channels to globally stretch the image, which also includes our improved guided noise reduction filtering. Finally, in order to amplify local details without affecting the naturalness of the results, we use a pyramid fusion model to fuse local details extracted from two methods, taking into account the detail restoration effect of the optical model. The enhanced underwater image through our method has rich colors without distortion, effectively improved contrast and details. The objective and subjective evaluations indicate that our approach surpasses the state-of-the-art methods currently. Furthermore, our approach is versatile and can be applied to diverse underwater scenes, which facilitates subsequent applications.

Funder

Opening Foundation of Key Laboratory of Computer Vision and System, Ministry of Education, Tianjin University of Technology, China

Guangxi Key Laboratory of Multi-Source Information Mining and Security

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3