Physics-guided neural network for tissue optical properties estimation

Author:

Chong Kian Chee1,Pramanik ManojitORCID

Affiliation:

1. Nanyang Technological University

Abstract

Finding the optical properties of tissue is essential for various biomedical diagnostic/therapeutic applications such as monitoring of blood oxygenation, tissue metabolism, skin imaging, photodynamic therapy, low-level laser therapy, and photo-thermal therapy. Hence, the research for more accurate and versatile optical properties estimation techniques has always been a primary interest of researchers, especially in the field of bioimaging and bio-optics. In the past, most of the prediction methods were based on physics-based models such as the pronounced diffusion approximation method. In more recent years, with the advancement and growing popularity of machine learning techniques, most of the prediction methods are data-driven. While both methods have been proven to be useful, each of them suffers from several shortcomings that could be complemented by their counterparts. Thus, there is a need to bring the two domains together to obtain superior prediction accuracy and generalizability. In this work, we proposed a physics-guided neural network (PGNN) for tissue optical properties regression which integrates physics prior and constraint into the artificial neural network (ANN) model. With this method, we have demonstrated superior generalizability of PGNN compared to its pure ANN counterpart. The prediction accuracy and generalizability of the network were evaluated on single-layered tissue samples simulated with Monte Carlo simulation. Two different test datasets, the in-domain test dataset and out-domain dataset were used to evaluate in-domain generalizability and out-domain generalizability, respectively. The physics-guided neural network (PGNN) showed superior generalizability for both in-domain and out-domain prediction compared to pure ANN.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3