Affiliation:
1. Changchun University of Science and Technology
2. Chinese Academy of Sciences
Abstract
A
∼
2
.
1
-
µ
m
laser is within an atmospheric transmission window and can be used in remote sensing. In this work, a 1064-nm laser was used as the pump source, pressurized hydrogen was used as the Raman active medium, and a dual-wavelength
∼
2
.
1
-
µ
m
Raman laser was generated. The 2147-nm laser was generated by a combination processes of stimulated vibrational Raman scattering and stimulated rotational Raman scattering, while a 2132-nm laser was generated by stimulated S-branch vibrational Raman scattering. Optimizing experimental conditions yielded a maximum pulse energy of 76.1 mJ, a peak power of
∼
9.2
M
W
, and a photon conversion efficiency of 29.8%.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献