Highly-sensitive temperature sensor based on photopolymerized-waveguide embedded Mach-Zehnder interferometer

Author:

Wang JiabinORCID,Yang Xingyu,Kou Yanru,Tong Di,Wang Anzhi,Niu Chong,Meng Haoran1,Li Song,Geng Tao1,Sun WeiminORCID

Affiliation:

1. Chinese Academy of Sciences

Abstract

Biology, medicine, and chemistry all rely heavily on highly sensitive optical fiber temperature sensors. To the best of our knowledge, this research introduces a unique design framework for high-performance fiber temperature sensors that helps eliminate the all-fiber interferometers’ sensitivity bottleneck. A section of photopolymerized waveguide is embedded in a typical Mach-Zehnder interferomenter framework with multimode fiber-single mode fiber-multimode fiber (MSM) structure. The thermal-optical coefficient (TOC) of the photopolymerized waveguide core, which is created via the fiber-end lithography technique, differs dramatically from that of the resin cladding. Due to the considerable TOC difference, the phase difference between the interfering beams significantly increases as the temperature changes. The fundamental variables affecting temperature sensitivity are conceptually explored and experimentally verified. The suggested device achieves a typical temperature sensitivity of 1.15 nm/C in the range of 30–100C, which is about 10 times as high as that of the all-fiber MSM sensors. The suggested designing framework offers a fresh thought for creating high-performing fiber optic temperature sensors.

Funder

Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences

The State Key Laboratory of applied optics

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Femtosecond Laser Direct-Writing On-Chip MZI Temperature Sensor Based on Polymer Waveguides;IEEE Transactions on Instrumentation and Measurement;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3