Abstract
We have demonstrated simultaneous detection of the polarization states and wavefront of light using a 7 × 7 array of angular variant micro-retarder-lenses. Manipulating the angular variant polarization with our optical element allows us to determine the two-dimensional distribution of polarization states. We have also proposed a calibration method for polarization measurements using our micro-retarder-lens array, allowing accurate detection of polarization states with an ellipticity of ± 0.01 and an azimuth of ± 1.0°. We made wavefront measurements using the micro-retarder-lens array, achieving a resolution of 25 nm. We conducted simultaneous detection of the polarization states and wavefront on four types of structured beam as samples. The results show that the two-dimensional distributions of the polarization states and wavefront for the four types of structured light are radially and azimuthally polarized beams, as well as left- and right-hand optical vortices. Our sensing technology has the potential to enhance our understanding of the nature of light in the fields of laser sciences, astrophysics, and even ophthalmology.
Funder
Terumo Foundation for Life Sciences and Arts
Sumitomo Foundation
Murata Science Foundation
Amada Foundation
Casio Science Promotion Foundation
Uehara Memorial Foundation
Japan Society for the Promotion of Science
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献