Decomposition-based multiobjective optimization for multipass cell design aided by particle swarm optimization and the K-means algorithm

Author:

Kong Rong1,Liu Peng1,Zhou Xin1

Affiliation:

1. Beijing Normal University

Abstract

We proposed a method to intelligently design two-spherical-mirror-based multipass cells (MPCs) and optimize multiple objectives simultaneously. By integrating the K-means algorithm into the particle swarm optimization (PSO) algorithm, an efficient method is developed to optimize MPC configurations possessing characteristics of both long optical path lengths (OPLs) and circle patterns. We built and tested an MPC with four concentric circle patterns, which achieved an OPL of 54.1 m in a volume of 273.1 cm3. We demonstrated the stability and detection precision of the developed gas sensor. Continuous measurement of methane in ambient laboratory air was realized, with a detection precision of 8 ppb and an averaging time of 13 s. The combination of K-means and PSO algorithms is effective in optimizing MPCs with multiple objectives, which makes it suitable for designing versatile MPCs satisfying various requirements of field applications, including pollution and greenhouse gas emission monitoring and high-sensitivity measurements of other trace gases.

Funder

Beijing Normal University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3