Strong localization and suppression of Anderson modes in an asymmetrical optical waveguide

Author:

Gökbulut Belkıs

Abstract

In this paper, transverse Anderson localization of light waves in a 3D random network is achieved inside an asymmetrical type optical waveguide, formed within a fused-silica fiber by capillary process. Scattering waveguide medium originates from naturally formed air inclusions and Ag nanoparticles in rhodamine dye doped-phenol solution. Multimode photon localization is controlled by changing the degree of the disorder in the optical waveguide to suppress unwanted extra modes and obtain only one targeted strongly localized single optical mode confinement at the desired emission wavelength of the dye molecules. Additionally, the fluorescence dynamics of the dye molecules coupled into the Anderson localized modes in the disordered optical media are analyzed through time resolved experiments based on a single photon counting technique. The radiative decay rate of the dye molecules is observed to be enhanced up to a factor of about 10.1 through coupling into the specific Anderson localized cavity within the optical waveguide, providing a milestone for investigation of transverse Anderson localization of light waves in 3D disordered media to manipulate light–matter interaction.

Funder

Boaziçi University Research Fund

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transverse anderson localization of light waves through Au nanoparticles in a 3D optical waveguide;Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XX;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3