Optical-fibre characteristics based on Fano resonances and sensor application in blood glucose detection

Author:

Zhu Jun1ORCID,Yin Jinguo1

Affiliation:

1. Guangxi Normal University

Abstract

We propose an optical-fibre metal-insulator-metal (MIM) plasmonic sensor based on the Fano resonances of surface plasmon polaritons (SPPs). Its structure consists of a coupling fibre that connects C-shaped and rectangular cavities and a main fibre that contains a semi-circular resonator. When incident light passes through the main fibre, it excites SPPs along the interface between the metal and medium. The SPPs at the resonator induce Fano resonances, owing to the coupling effect. The results show that the designed optical-fibre MIM plasmonic sensor could flexibly tune the number of Fano resonances by adjusting the structure and geometric parameters to optimise the sensing performance. The full width at half maximum of the Lorentzian resonance spectra formed by the electric and magnetic fields reached 23 nm and 24 nm, respectively. The wavelength of the Fano resonance shifted as the refractive index changed; thus, the proposed sensor could realise the application of sensing and detection. The highest sensitivity achieved by the sensor was 1770 nm/RIU. Finally, we simulated the designed sensor to human blood-glucose-level detection, and observed that the resonance wavelength would increase with the increase of glucose concentration. Our study shows that optical fibres have broad application prospects in the field of electromagnetic switching and sensing.

Funder

Natural Science Foundation of Guangxi Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3