Silicon-tapered waveguide for mode conversion in metal–insulator–metal waveguide-based plasmonic sensor for refractive index sensing

Author:

Kazanskiy N. L.1ORCID,Butt M. A.ORCID,Khonina S. N.1ORCID

Affiliation:

1. IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS

Abstract

In this study, we have undertaken a comprehensive numerical investigation of a refractive index sensor designed around a metal–insulator–metal (MIM) plasmonic waveguide. Our approach utilizes the finite element method to thoroughly analyze the sensor’s performance. The sensor’s configuration utilizes a ring resonator design, which has been slightly modified at the coupling segment. This modification enhances the efficiency of light coupling between a bus waveguide and the ring resonator, particularly at the resonance wavelength. This strategic adjustment significantly improves the device’s extinction ratio, a critical factor in its functionality. Remarkably, the sensitivity of this sensor is determined to be approximately 1155.71 nm/RIU, while it possesses a figure of merit of 25.9. Furthermore, our study delves into the intricate mechanism governing the injection of light into the nanoscale MIM waveguide. We achieve this through the incorporation of silicon-tapered waveguides, which play a pivotal role in facilitating the transformation of a dielectric mode into a plasmonic mode, and vice versa. Ultimately, the findings of this research hold significant promise for advancing the field of plasmonic sensing systems based on MIM waveguide technology. The insights gained here pave the way for the practical realization and optimization of highly efficient and precise plasmonic sensors.

Funder

Samara National Research University Development Program

FSRC “Crystallography and Photonics” RAS

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3