Affiliation:
1. PeopleTec, Inc.
2. University of Brescia
3. Tech Center
4. DEVCOM Aviation and Missile Center
Abstract
Nonlinear silicon photonics offers unique abilities to generate, manipulate and detect optical signals in nano-devices, with applications based on field localization and large third order nonlinearity. However, at the nanoscale, inefficient nonlinear processes, absorption, and the lack of realistic models limit the nano-engineering of silicon. Here we report measurements of second and third harmonic generation from undoped silicon membranes. Using experimental results and simulations we identify the effective mass of valence electrons, which determines second harmonic generation efficiency, and oscillator parameters that control third order processes. We can then accurately predict the nonlinear optical properties of complex structures, without introducing and artificially separating the effective χ(2) into surface and volume contributions, and by simultaneously including effects of linear and nonlinear dispersions. Our results suggest that judicious exploitation of the nonlinear dispersion of ordinary semiconductors can provide reasonable nonlinear efficiencies and transformational device physics well into the UV range.
Funder
Agencia Estatal de Investigación
Research, Development and Engineering Command
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献