Consequences of non-differentiable angular dispersion in optics: tilted pulse fronts versus space-time wave packets

Author:

Hall Layton A.1ORCID,Abouraddy Ayman F.1ORCID

Affiliation:

1. University of Central Florida

Abstract

Conventional diffractive and dispersive devices introduce angular dispersion (AD) into pulsed optical fields, thus producing so-called ‘tilted pulse fronts’. Naturally, it is always assumed that the functional form of the wavelength-dependent propagation angle[s] associated with AD is differentiable with respect to wavelength. Recent developments in the study of space-time wave packets – pulsed beams in which the spatial and temporal degrees of freedom are inextricably intertwined – have pointed to the existence of non-differentiable AD: field configurations in which the propagation angle does not possess a derivative at some wavelength. Here we investigate the consequences of introducing non-differentiable AD into a pulsed field and show that it is the crucial ingredient required to realize group velocities that deviate from c (the speed of light in vacuum) along the propagation axis in free space. In contrast, the on-axis group velocity for conventional pulsed fields in free space is always equal to c. Furthermore, we show that non-differentiable AD is needed for realizing anomalous or normal group-velocity dispersion along the propagation axis, while simultaneously suppressing all higher-order dispersion terms. We experimentally verify these and several other consequences of non-differentiable AD using a pulsed-beam shaper capable of introducing AD with arbitrary spectral profile. Non-differentiable AD is not an exotic phenomenon, but is rather an accessible, robust, and versatile resource for sculpting pulsed optical fields.

Funder

Office of Naval Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3